From arginine methylation to ADMA: A novel mechanism with therapeutic potential in chronic lung diseases
نویسندگان
چکیده
Protein arginine methylation is a novel posttranslational modification regulating a diversity of cellular processes, including protein-protein interaction, signal transduction, or histone function. It has recently been shown to be dysregulated in chronic renal, vascular, and pulmonary diseases, and metabolic products originating from protein arginine methylation have been suggested to serve as biomarkers in cardiovascular and pulmonary diseases. Protein arginine methylation is performed by a class of enzymes called protein arginine methyltransferases (PRMT), which specifically methylate protein-incorporated arginine residues to generate protein-incorporated monomethylarginine (MMA), symmetric dimethylarginine (SDMA), or asymmetric dimethylarginine (ADMA). Upon proteolytic cleavage of arginine-methylated proteins, free intracellular MMA, SDMA, or ADMA is generated, which, upon secretion into the extracellular space (including plasma), directly affects the methylarginine concentration in the plasma. Free methylarginines are cleared from the body by renal excretion or hepatic metabolism. In addition, MMA and ADMA, but not SDMA, can be degraded via a class of intracellular enzymes called dimethylarginine dimethylaminohydrolases (DDAH). ADMA and MMA are endogenous inhibitors of nitric oxide synthases (NOS) and ADMA has been suggested to serve as a biomarker of endothelial dysfunction in cardiovascular diseases. This view has now been extended to the idea that, in addition to serum ADMA, the amount of free, as well as protein-incorporated, intracellular ADMA influences pulmonary cell function and determines the development of chronic lung diseases, including pulmonary arterial hypertension (PAH) or pulmonary fibrosis. This review will present and discuss the recent findings of dysregulated arginine methylation in chronic lung disease. We will highlight novel directions for future investigations evaluating the functional contribution of arginine methylation in lung homeostasis and disease with the outlook that modifying PRMT or DDAH activity presents a novel therapeutic option for the treatment of chronic lung disease.
منابع مشابه
Author's response to reviews Title: From arginine methylation to ADMA: A novel mechanism with therapeutic potential in chronic lung diseases Authors:
متن کامل
Metabolomic Profiling of Arginine Metabolome Links Altered Methylation to Chronic Kidney Disease Accelerated Atherosclerosis
Atherosclerotic cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD), but the mechanisms underlying vascular disease has not been fully understood. As the nitrogen donor in nitric oxide (NO·) synthesis, arginine and its metabolic products are integrally linked to vascular health and information. We hypothesized that derangements in this pathway coul...
متن کاملIncreased protein arginine methylation in chronic hypoxia: role of protein arginine methyltransferases.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthesis. ADMA is generated by catabolism of proteins containing methylated arginine residues, and its levels are correlated with endothelial dysfunction in systemic cardiovascular diseases. Arginine methylation of cellular proteins is catalyzed by protein arginine methyltransferases (PRMT). The expression and locali...
متن کاملAnalysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA.
Protein arginine methylation is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). Three forms of methylarginine have been identified in eukaryotes: monomethylarginine (l-NMMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA), all characterized by methylation of one or both guanidine nitrogen atoms of arginine. l-NMMA and ADMA, but not...
متن کاملDimethylarginine metabolism during acute and chronic rejection of rat renal allografts
BACKGROUND Dimethylarginines are inhibitors of NO synthesis and are involved in the pathogenesis of vascular diseases. In this study, we ask the question if asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels change during fatal and reversible acute rejection, and contribute to the pathogenesis of chronic vasculopathy. METHODS The Dark Agouti to Lewis rat strain co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Pulmonary Medicine
دوره 9 شماره
صفحات -
تاریخ انتشار 2009